Automatic Semantic Tagging of Estonian Spatial Adverbials for Valency Pattern Mining

Kertu Saul, Sven Laur, Kadri Muischnek, Jelena Kallas

Valency patterns

Valency pattern = lexical verb + abstract arguments that relate to the verb's meaning

throw: AGENT PATIENT GOAL throw: subj obj to+obl/obl+all Anna threw the ball to Kevin. Anna viskas palli Kevinile.

- Large languages manually compile these in dictionaries or other similar resources (i.e. Framenet)
- Small languages need to automatically mine these from corpora

Estonian (and why we need semantic tagging)

- ~ 1 million speakers
- Free word order
- Morphologically very rich, 14 nominal cases
- Cases are **very polyfunctional**: 2-13 functions per case
- Arguments can be in most cases

Lubja-l kadu-s eile õhtu-l 80 protsendi-l elanike-l elekter. Lubja-ADE disappear-3SG.PST yesterday night-ADE 80 percent-ADE resident.PL-ADE electricity "Electricity disappeared for 80 percent of residents in Lubja yesterday night"

Automatic semantic tagging

- Focus on tagging nominal adverbials with spatial meaning
- Look at adverbials in **6 "spatial" cases**: allative (onto), adessive (on), ablative (from on), illative (into), inessive (in), elative (from in)
- Differentiate between real spatial usage vs using a "spatial" case for coding other semantic types
- Data from morphosyntactically annotated Estonian Reference Corpus (245 million words)
- Test two methods:
 - LLMs
 - Verb-case patterns: can adverbials be semantically tagged by only knowing their case and head verb

Method 1: LLMs

- Detecting physical locations
- Test-set of **1000 adverbials in spatial cases** + sentence for context
 - 10 tags: physical location, abstract location, event, time, manner, state, owner, reason, dependent, other, error
- Annotation guide as main basis of the prompt
- Model: GPT-40
- Accessed through Open-Al's API
- Word and sentence as input from csv file
- Asked if this word in this sentence is a physical location or not
- Zero-shot approach

I am a linguist. You are a linguist, who helps detect physical locations. Determine whether the word "{row['form']}" in the following sentence "{row['sentence']}" is a physical location based on the following categories:

Physical locations:

- 1. Place names (e.g. Bristol, Sepphoris)
- 2. Buildings/physical locations of businesses (bankhouse, multimedia studio, club Kuku, computer company)
- 3. Physical objects, including living beings (first place podium, the Moon, backup device, saddle, cloud)
- 4. Areas with a definable geographical location (scene of the fire, the North Pole, shoreline, cloud of dust)

Not physical locations:

- 1. Abstract locations, whose geographical location can't be determined (e.g. Wifi, computer market, airspace, digital platform).
- 2. Activities and events (dress rehearsal, recruitment).
- 3. Living being who's the performer of the action (slippers went for the scrambler).
- 4. State (run legs to blisters, sit in shit).
- 5. Manner adverbials (most acutely, hand in hand).
- 6. Reason adverbials (in case of destruction, in the existence of a processor).
- 7. Time adverbials (year, morning).
- 8. Constructions and expressions (despite the attitude, talking about validity).

```
Word: {row['form']}
In sentence: {row['sentence']}
```

Answer in the format:

- If a word is a physical location: "{row['form']}|{row['sentence']}|LOC"
- If a word isn't a physical location: "{row['form']}|{row['sentence']}|NONE"

NB! ALWAYS ONLY answer in the form LOC or NONE

Results

- Recall 0.93, Precision 0.78, F-score 0.85
- Should have been tagged as physical locations but weren't (FN):
 - Organisations
 - I went to the modelling school yesterday physical location
 - I go to modelling school abstract location
 - Brand names (*I'm sitting on an Aeron*)
 - Uncapitalised place names (I've never been to piibe)
- Shouldn't have been tagged as physical locations but were (FP):
 - 60% abstract locations
 - 13% typos (went to pdagogic university [sic])
 - 13% events (sit at a sculpting class)
 - 9% constructions (repairs are moving thanks to a new machine).

Method 2: verb-case patterns

- Hypothesis: there is a significant amount of instances where all of a verb's dependents in a specific case belong to the same semantic class
 - travel to: Africa ✓, him X, a CD X, pieces X
 - listen to: Africa ✓, him ✓, a CD ✓, pieces ✓
- These patterns could be used to semantically annotate all of a verb's dependents in said case
 - travel to: Africa, piibe, an area all locations
- Words with one semantic type across all patterns could be annotated with that type across the entire corpus
 - area: location, location ✓
 - Africa: location, organization, object X

Step 1: preliminary semantic tagging

- Using a semantically tagged dictionary
- 128 semantic types of various specificity (time, time_month, time_ADV etc)
- Combine into general types
- Create wordlists for 5 semantic types: location, time, state, event, not_location
 - only include words with one semantic type
- Annotate nominal adverbials in spatial cases in the Estonian Reference Corpus using these wordlists
 - Unique adverbials annotated: 23,979 out of 245,358 aka 9.8%
 - Repeating adverbials annotated: 2.3M out of 7.8M aka 28.76%

Step 2: statistics

- 1. Count per verb + case combination **how many annotated dependents were locations** or had some other tag
 - kuuluma + ill (belong into): location = 1165, other_tags = 1347
- 2. Calculate **relative frequency** for location tag and all other tags
 - kuuluma + ill: location 46,4%, other_tags 53,6%
- 3. Calculate **logarithmic fold change** for plotting
 - kuuluma + ill: log2(0.464/0.536) = -0.2094
- 4. Count how many annotated dependents were unique words
 - kuuluma + ill: 261

Results

- 3992 aka 18.8% of verb-case patterns only have dependents with the location tag
 - These patterns have ~45000 unannotated dependents combined which can now be annotated as locations
- Variability of semantic types in a pattern is not correlated with how many senses a verb has
- In patterns above the 80:20 ratio line, other tags actually occurred either very peripherally or were there due to incorrect morphological, syntactic or semantic tagging
 - Accounts for additional 10% of patterns or ~643000 unannotated dependents
- Some patterns were systematic mistakes of the Estonian syntactic parser

Conclusions

- GPT-40 works well for semantic annotation, even in smaller languages
- Some semantic types have to be explained in the prompt more than others
- Around 30% of verb-case patterns take dependents in a single dominant semantic type
 - Out of these, patterns above the 80:20 ratio line require additional analysis before use in tagging
- Same method can be applied in other languages when the language:
 - encodes adverbials with cases and/or adpositions
 - has access to a limited semantic dataset

Thank you for listening!